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ABSTRACT
With the rise of mobile video streaming service, video popu-
larity has drawn a great deal of attention in both academia
and streaming industry. In this paper, we present a novel
view of video popularity as time series. We collect more
than two billion view records from one of the largest mo-
bile streaming content providers in China. Using Discrete
Fourier transform, we decompose popularity series of videos
into two parts, the seasonal and residual component series.
We find that the traffic dynamics of videos is governed by a
small number of components in the frequency spectrum, and
that traffic patterns within and across days differ from type
to type. We further investigate the short-term and long-
term stability of video popularity, and find that the stability
metrics are highly correlated with total video requests.

CCS Concepts
•Mathematics of computing → Time series analy-
sis; Computation of transforms; •Networks→ Social
media networks;

Keywords
Video Popularity Dynamics, Discrete Time Series, Time Se-
ries Decomposition, User Behavior, Popularity Stability

1. INTRODUCTION
The popular online VoD (Video-on-Demand) service at-

tracts a lot of users. The major video service providers offer
fancy mobile apps, providing users with easy access to on-
line videos. With a simple touch on the screen, video users
leave footprints on servers. These footprints include not
only timestamps and IP addresses, but also users’ viewing
behavior. The huge volume of data brings many benefits
to video service providers, ISPs, as well as advertisers, and
largely enriches research on video popularity and user behav-
ior, which is helpful in designing, configuring and managing
video content distribution systems.
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Dated back to 2006, the authors of [1] modeled user behav-
ior pattern based on a large-scale VoD systems deployed by
China Telecom. They also made an early attempt in under-
standing video popularity. Authors of [2] thoroughly stud-
ied the popularity life-cycle of videos, the intrinsic statistical
properties of requests and their relationship with video age,
and the level of content aliasing or of illegal content in the
system. Both [1] and [2] only took the number of user re-
quest into account. However, they provided fundamental
perspectives in understanding VoD systems and user behav-
ior. Other video-related metrics, such as #comments, #fa-
vorites, #ratings and average rating, were first taken into
consideration in [3]. The authors of [3] also studied users’
behavior pattern of higher-level interaction, i.e., leaving a
comment, adding a video to one’s favorite set, rating the
video, and sharing a video to OSN (Online Social Network).
Social network data were latter taken into analysis. In [4],
researchers merged data from YouTube and Twitter to inves-
tigate the relation between social network and video popu-
larity. They obtained an effective cross-network predictor of
two kinds of Twitter-driven YouTube views, namely, JUMP
(sudden increase) and EARLY (increase shortly after up-
load). Authors of [5] pointed out that popularity dynamics
of OSN-driven views is nonlinear, therefore linear models
cannot predict video popularity well. They applied an epi-
demic model based on the dataset of Renren, the largest
OSN in China at that time, and achieved surprisingly accu-
rate prediction results.

In most of the previous works, researchers only focused
on the popularity variation between days. Various regres-
sion models and learning methods were applied, and amaz-
ing outcomes were archived. However, these methods had
problems depicting the details in the popularity evolution
and user behavior patterns. In [6], the authors present a
qualitative description on the access patterns and the daily
and hourly change in user interest. This is a step towards
VoD service user behavior study on an hourly basis.

As we look into our dataset collected from one of the
largest online VoD service providers in China, we find that
the variation of video popularity follows certain short-term
and long-term patterns. It seems to us that video popularity
dynamics resembles signals in the signal processing perspec-
tive. We regard the data as more than merely numbers, but
also the amplitude of the popularity fluctuation. Therefore,
we tried signal processing methods on our dataset and look
deeply into the fluctuation of the popularity curves.

To the best of our knowledge, our work makes the first
attempt towards understanding the lifecycle of video pop-
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ularity as discrete time series and apply signal processing
methods on it. In this paper, we seek to look into the evo-
lution of video popularity dynamics and underlying user be-
havior patterns.

The main contributions of this work is as follows:

• We decompose video popularity data into Seasonal
Component Series and Residual Component Se-
ries using frequency domain methods. By doing so, we
manage to capture the major activities and the trends
of video popularity dynamics within and across days.

• We investigate the popularity curve in frequency do-
main. The frequency spectrum reveals details about
popularity evolution. Concretely, we observe periods
of 8, 6, and 4.8 hours in the fluctuation of video pop-
ularity, which is non-intuitive and can hardly be ob-
tained via traditional methods.

• We compared the frequency spectra of different types
of videos and show the various user behavior patterns
within and across days.

• We redefine two metrics originally used to evaluate se-
ries of time interval [7] and apply them to video pop-
ularity series. The redefined metrics evaluate stability
in the traffic of individual video within and across days
respectively. It is found that the two stability metrics
are strong correlated with the total request of videos.
This discovery may lead to a new understanding to-
wards the concept of popularity.

The popularity dynamics of videos with different types or
viewcounts evolve in very different ways. These differences
have large impact on the efficiency of content distribution.
We believe that our findings will benefit the design of con-
tent replication systems. Concretely, we propose a guideline
for replication priority in the means of video type and view-
count.

The rest of the paper is organized as follows. In Section 2,
we demonstrate our dataset. Section 3 introduces Digital
Signal Processing methods used in our work. In Section 4,
we qualitatively analyze the popularity dynamics in time
and frequency domain, whereas in Section 5, we analyze
the long-term and short-term stability using the redefined
metrics. We conclude in Section 6.

2. DATASET

2.1 Overview
We collect data from one of the largest VoD service providers

in China from September 1 to 14, 2014. The dataset involves
around 1.5 million videos and more than 2.5 billion requests
started from mobile clients. The features of our data include:

<Timestamp,VideoID,VideoType,UserID,Duration>
Timestamp marks the end of a session. By subtracting the

duration of the session, we get the time when the request
arrived. VideoType identifies the type of video, i.e., TV,
music video, news, entertainment, etc. Duration stands for
the viewing time of the video session.

2.2 Data Pre-Processing
In this work, videos are not treated as independent clips.

We are interested in the similarities and differences between

Type % of videos % of viewcount

News 28.7 7.8
Variety Show 12.6 15.7
Music Video 9.3 1.9

Entertainment 8.3 3.2
Animation 4.9 14.8

TV 4.3 35.1

Total 68.1 78.5

Table 1: Proportion of 6 major types of video in the dataset

groups of videos. By summing over all video in the same
category, the trend of popularity evolution is easy to obtain.
To focus our study on the mainstream videos, we choose only
those that fall into the six categories: news, variety show,
music video, entertainment, animation, and TV. As
shown in Table 1, videos of these six types make up a consid-
erate proportion of either amount or viewcount. We further
filter out the invalid requests, such as those with viewing
time of 0 and repeated requests within a short time. Since
we are looking into the lifecycle of videos, we ignore videos
that did not generate any traffic on Day 1, so that all videos
in the cleansed datatset are guaranteed to have been up-
loaded no later than Day 1. With the above pre-processing,
we end up with around half a million videos (nearly a third
of the original volume).
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(c) RCS’s autocorrelation
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(d) RCS v.s. original

Figure 1: An overview of the cleansed dataset. Figure 1a
shows the overall viewcount curve. As is illustrated by Fig-
ure 1b, major components in the spectrum are mainly con-
cealed in low frequency parts. Figure 1c shows the auto-
corelation of the less important components in the popular-
ity dynamics. In Figure 1d, the original series is shifted to
achieve an average of zero for better visualization.

The original Timestamp is recorded to the second. Since
we are mainly interested in the general trend of popularity
dynamics within and across days, we group the timestamps
of all video into bins of 10-minute intervals based on the
reduced dataset, so that the popularity of each video is rep-
resented with a time series with 2016 elements. Figure 1a
demonstrates the traffic of all videos in the dataset.

3. METHODOLOGY
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3.1 Discrete Fourier Transform
Discrete Fourier Transform (DFT) converts a finite se-

quence of equally spaced samples into the coefficients of a
finite combination of complex sinusoidal signals. It decom-
poses a time series into a combination of sinusoidal waves of
certain amplitude, frequency, and phase. DFT of a discrete
time series is defined as

Xk =

N−1∑
n=0

xne
−j 2πkn

N , k = 0, 1, 2, ..., N − 1 (1)

where xn is the nth sample in the time series, and Xk is the
complex coefficient of the kth frequency component. The
variations of |Xk| (amplitude) and ∠Xk (phase) in frequency
domain make up the frequency spectrum of xn. Our discus-
sion is limited to the amplitude spectrum.

3.2 An Overview of Amplitude Spectrum
Let V = [1,m] be the set of all videos, and T = [t1, t2, ..., tn],

n = 2016, be the set of timestamps (10-minute time interval
as defined in Section 2.2). For each type-i video v(i, j)∈V ,
we denote the original popularity series as

Oi,j(T ) = {oi,j(t1), oi,j(t2), ..., oi,j(tn)}.
We first map our time series into the frequency domain by

applying DFT to convert Oi,j(T )for all v(i, j)∈V . Figure 1b
shows the corresponding amplitude spectrum of the time
series in Figure 1a. Significant frequency components can
be observed at lower frequencies such as 0.07, 0.14, 0.35 and
0.71 cycles per day, which corresponds to periods of 14, 7, 3.5
and 1.4 days respectively. Components at relatively higher
central frequencies such as 1, 2, 3, 4 and 5 cycles per day cor-
respond to periods of 24, 12, 8, 6 and 4.8 hours respectively.
Some of the periods, such as those of 8, 6 and 4.8 hours, are
almost impossible to be discovered in time domain.

3.3 Extraction of Major Frequency Compo-
nents

Using frequency domain method to extract components
from a time series is feasible because DFT decomposes a se-
ries into a finite combination of sinusoidal waves. For most
meaningful signals that behave largely different from white
noise, there will be only a small number of frequency compo-
nents with significant amplitude, while the rest remain very
close to zero. Empirically, the major frequency components
of the spectrum largely shape the original signal, and the
less dominant frequency components form the detail.

We hereby decompose the original series into two parts:
Seasonal Component Series (SCS), which comprises of
the major frequency components of the original popularity
series, and Residual Component Series (RCS), which
is the rest. SCS can incorporate regular patterns occurring
on any time scale. RCS, on the other hand, can represent
irregular traffic. [8]

To extract the SCS, we apply the similar method as that
in [8]. For each video v(i, j)∈V , we decompose the original
time series Oi,j(T ) into seasonal and residual components
through the following steps:

1. The k frequency components ofDFT [Oi,j(T )] with the
largest amplitudes are selected.

2. SCSi,j(T ) is generated using inverse DFT of the k
components selected in Step 1, where SCSi,j(T ) =
{scsi,j(t)|t∈T}

3. RCSi,j(T ) is obtained by subtracting SCSi,j(T ) from
Oi,j(T ): RCSi,j(T ) = {oi,j(t)− scsi,j(t)|t∈T}
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(a) SCSi,j(T ) v.s. Oi,j(T )
k = 100
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(b) Major components v.s all
k = 100
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(c) SCSi,j(T ) v.s. Oi,j(T )
k = 7
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(d) Major components v.s all
k = 7

Figure 2: Oi,j(T ) vs SCSi,j(T ) for variety shows and cor-
responding amplitude spectra using k = 100 and k = 7.
Obviously, choice of k determines the performance of ex-
traction.

The choice of k determines the performance of the decom-
position. The larger k is, the closer SCS is to the original
series. However, larger k brings more components with rel-
atively small amplitude, causing inefficiency in tracking the
trend, as is shown in Figure 2a and Figure 2b. To the other
end, the smaller k is, the more frequency components the
procedure will filter. An extremely small k will even take
away important components. As an illustration, Figure 2c
and Figure 2d suggest that when k is unreasonably small
(in the case of variety shows, k = 5), SCS fails to capture
some important fluctuations in the original series. A good
k should retain most of the regular activities of the original
series in SCS, while leaving the RSC with little information
(See Figure 1d). We set k to be 25 by manually finding the
smallest value such that the average autocorrelation of RCS
quickly drops below 0.1 (See Figure 1c).

4. POPULARITY DYNAMICS IN TIME AND
FREQUENCY DOMAINS

4.1 Time Domain Analysis
Figure 3 shows the results of SCS extraction. Aside from

the extreme pulse-like cases, in each case, the SCSs fit the
original series rather well. Common features in the SCS
of each type of videos can be easily generalized. The SCS
of each type has two peaks each day. The first traffic peak
occurs near 1:00 PM, when viewers are enjoying their lunch
break. The second appears around 10:30 PM, when viewers
are just about to get prepared for bed. The position of the
peaks are a little different from that of web traffic [1, 3], since
nowadays not many people stick in front of computer screens
during breaks and before bed time. Moreover, the latter
peak tends to be much stronger than the former, suggesting
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(a) News clips (T )
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(b) News clips (F )
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(c) Variety shows (T )
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(d) Variety shows (F )

0 2 4 6 8 10 12 14
−1

0

1

2
x 10

5

day

v
ie

w
c
o

u
n

t

 

 

Original
SCS

(e) Music videos (T )
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(f) Music videos (F )
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(g) Entertainment clips (T )
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(h) Entertainment clips (F )
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(i) Animation clips (T )
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(j) Animation clips (F )
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(k) TV (T )
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(l) TV (F )

Figure 3: SCS and corresponding frequency spectra using k = 25, compared with those of the original. Zero-frequency
components are removed. Captions below each subfigure marks the video type. (T ) and (F ) marks Time and Frequency
domain respectively.

that more videos are watched before bed time than during
lunch breaks.

Because of the frequency filtering mechanism, SCS fails
in following pulse-like behavior in the original series. For
example, the SCS of news clips (Figure 3a) does not cap-
ture the traffic explosion in the afternoon of Day 1. This
pulse-like burst of request brings much disturbance to the
frequency spectrum, causing poor performance of SCS in
approximating the original series. A feasible explanation is
that the traffic of news clips explodes on the occurrence of
unpredictable breaking news. Another explanation is that
news clips stay appealing only for a short period after be-
ing uploaded, since viewers are only interested in news that
occurred very recently. The latter explanation also works
in the cases of variety shows (Figure 3c), music videos (Fig-
ure 3e), and entertainment videos (Figure 3g).

4.2 Frequency Domain Analysis
Mathematically, the zero-frequency component represents

the average of the whole original series (see Figure 4a and
Figure 4b). In some cases, the large value of zero-frequency
component deteriorates the visualization effect. In most
cases, we set the zero-frequency component to zero for bet-
ter visualization. The value of k in this subsection may be
changed for the purpose of analyzing.

The component at frequency f stands for a 1
f

-day, or a
24
f

-hour period in the traffic dynamics. For every type of
videos, major components around central frequencies of 1, 2
and 3 cycles per day are observed, which corresponds to the

periods of 24, 12 and 8 hours respectively. Significant com-
ponents between 0 and 1 cycle per day are also found. Due
to DFT, we are able to capture the periods like 14, 7 and
3.5 days as well as 8, 6 and 4.8 hours. These periods can-
not be explicitly revealed from time domain, but can show
user behavior patterns caused by different work schedule,
lifestyle, content type and etc, that have not been depicted
by previous methods.

Strong components at lower frequencies (between 0 and
1 cycle per day) indicate the evolution of video popularity
between days. Significant components in this interval indi-
cate severe traffic fluctuations on the daily basis. It is noted
that news clips (Figure 3b), variety shows (Figure 3d), mu-
sic videos (Figure 3f) and entertainment clips (Figure 3h)
have significant components near 0 in their spectra. In the
case of music videos (Figure 4d), the components gathering
around 0 are actually the strongest in the spectrum, im-
plying drastic fluctuation in popularity between days (Fig-
ure 4c). Actually, the request drops drastically after the day
1. The phenomenon also appears in the spectrum of news
clips, whose popularity is all about timeliness. In the spec-
tra of TV (Figure 4f) and animations (Figure 4h), however,
there are only weak components within the (0, 1) interval,
suggesting that their popularity are relatively stable on the
daily basis (Figure 4e and Figure 4g).

Major Components at higher frequencies depict popular-
ity variation pattern within each day. Most videos have
relatively higher components at 1 and 2 cycles per day, with
the one at 2 slightly smaller than that at 1. This manifests
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(a) Time domain (k = 1)
Music video
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(b) Frequency domain (k = 1)
Music video
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(c) Time domain (k = 7)
Music video
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(d) Frequency domain (k = 7)
Music video

0 2 4 6 8 10 12 14
−5

0

5

10
x 10

5

day

v
ie

w
c
o

u
n

t

 

 

Original
SCS

(e) Time domain (k = 11)
TV
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(f) Frequency domain (k = 11)
TV
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(g) Time domain (k = 11)
Animation
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(h) Frequency domain (k = 11)
Animation

Figure 4: Frequency domain components and corresponding time domain popularity. k is manually selected for analysis.

that the 24-hour period is much stronger than the 12-hour
one. The existence of 24 and 12-hour periods are quite intu-
itive. However, 6, 4.8, and especially 8-hour periods are also
illustrated by the spectra(all, especially Figure 3j and Fig-
ure 3l). These non-intuitive periods can hardly be observed
in time domain. They indicate user behavior patterns that
are have not been previously observed. These patterns may
be resulted from different working schedule or lifestyle. This
observation is worthy of further investigation.

The distribution of significant components across the spec-
trum is also a good indicator of popularity dynamics and
user behavior patterns. Empirically, deviation from central
frequencies are caused by multiplicative noise, which indi-
cates small variance in user behavior patterns. Components
concentrated within small margin from central frequencies
guarantee regular the user behavior pattern, therefore the
request is predictable. Components spreading over a wide
range across the spectrum indicates poor predictability. In
the case of TV and animation, the energy of their spectrum
is quite concentrated (Figure 4f and Figure 4h). Their re-
quest evolves in a stable and regular way. It is foreseeable
that their popularity are far more predictable then that of
the other types, whose energy spoils over the spectra.

The discoveries above enlighten us that when replicating
video contents that have been living for a long time, it is
unnecessary to replicate videos like news clips, while is it
still necessary to replicate videos like TV.

5. POPULARITY STABILITY

5.1 Grouping Criteria
In this section we focus on videos with different popularity.

Videos are grouped by their viewcounts. The video traffic
follows a power-law distribution, as is described in Table 2.
In order to keep the video popularity variance within a group
at a reasonable level, we manually classify the videos into
five groups by viewcounts as Table 2 shows.

Viewcount % of videos

≤ 199 72.7
200− 499 8.7
500− 999 5.1

1000− 4999 8.5
≥ 5000 5.0

Table 2: Distribution of videos based on popularity

5.2 Redefinition of Metrics
In previous work on human mobility [7], metrics such as

burstiness and memory are introduced to evaluate the
temporal distribution of human activities. However, in this
work, we treat video traffic directly as time series. We there-
fore redefine the two following metrics:

B(i, j) =
σi,j/µi,j − 1

σi,j/µi,j + 1
(2)

M(i, j) =
1

n− k

n−k∑
r=1

(oi,j(tr)− µ(1)
i,j )(oi,j(tr+k)− µ(2)

i,j )

σ
(1)
i,j σ

(2)
i,j

(3)
where µi,j and σi,j are the average and the standard de-

viation of Oi,j(T ) respectively, and µ
(θ)
i,j and σ

(θ)
i,j are the

average and the standard deviation of the series consisting
of the heading (θ = 1) or the tailing (θ = 2) n− k elements
in Oi,j(T ) respectively.

The range of B(i, j) is [−1, 1]. It increases monotonously
as σi,j/µi,j grows, which is the normalized variance in pop-
ularity from the average traffic. When directly applied to
time series, B correlates negatively with the long-term sta-
bility of video popularity. Larger value of B suggests larger
deviation in video request from the average level, therefore
less long-term stability of popularity.
M(i, j) is the Pearson Correlation Coefficient between the

time series excluding the last k values and that excluding
the first k. The range is [−1, 1] by definition. M will have
a larger value only when the intervals with a lot of traffic
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are followed by the intervals with considerate request. It
measures the stability of popularity within k time slots. In
other words, M correlates positively with the short-term
stability of video popularity. Here, we set k to be 1.

5.3 Popularity Stability Analysis
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Figure 5: M v.s. B for a random sample of all videos

In Figure 5, we randomly select a subset of the (B,M)
pairs of all videos in our dataset. Videos in the same group
are mapped to (B,M) pairs in neighboring regions on the
plain, showing cluster-like features.

Generally, popular videos tend to have bigger M values
and B values around zero (mapped to the lower right corner
in Figure 5), indicating a good stability both short-term and
long-term. This shows that most of the popular videos stay
attractive for a long time. Unpopular videos tend to have
smaller M values and bigger B values (mapped to the up-
per left corner), suggesting significant instability both short-
term and long-term. This implies that unpopular videos
failed to gain stable traffic. The traffic of these videos re-
mained dormant for most of the time, with several sporadic
requests. This discovery intuitively suggests higher priority
for popular videos when caching.

We can actually see a borderline to the upper left corner
in Figure 5. These (B,M) pairs marks videos with the most
unstable popularity both long-term and short-term. Most of
such videos have the lowest total viewcount. However, a few
videos with relatively considerate request are also spotted
on the curve. Manual check shows that at some mysterious
times, a flood of requests arrived at these relatively popular
ones. There is a small cluster of popular videos are found
near (0.4, 0.8), suggesting good short-term stability but poor
stability over the long period. Judging from video type and
traffic pattern, these are mostly news clips covering breakout
events. These videos remained heated for a short period of
time, but eventually faded out just like other news clips.
The combination of B and M provide us with a novel view
on the definition of popularity.

The discoveries above enlighten us that it is unnecessary
to replicate unpopular videos, while is it of great necessity
to replicate popular videos except for news clips.

6. CONCLUSIONS AND FUTURE WORK

We take the first step towards understanding video pop-
ularity data as discrete time signals. Popularity series of
major types of videos is decomposed and qualitative analy-
sis is conducted on the Seasonal Component Series as well
as major frequency components of popularity series. The
frequency domain methods does well in following the popu-
larity dynamics and capturing non-obvious patterns, such as
periods of 8,6 and 4.8 hours. We then redefined metrics to
evaluate the long-term and short-term stability of popular-
ity series. In most cases, the combination of the two metrics
are highly correlated with total traffic of a certain video.
Our findings provide reasonable guideline for the design of
content replication systems.

We have shown that DFT is a powerful tool in time se-
ries analysis. However, DFT evaluates the distribution of
frequency components of the whole time series, paying not
attention to the distribution of amplitude in time. In our fu-
ture work, we plan to exploit wavelet or short-term Fourier
transform to get a better understanding of user behavior
and to predict the video popularity. Other features in our
dataset, such as viewing time, will be added into analysis.
We are also working on the popularity dynamics of list of
videos, such as episodes of the same TV or variety shows.
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