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Abstract—Video-on-Demand (VoD) services are having more
and more impact on people’s daily life. The huge number of view
records generated during the services reveal lots of information
about video popularity and user behavior. In this work, we seek
to understand user behavior from a network approach. Users
who overlapped view records are defined as “familiar strangers”
of each other. With network science concepts, dynamic familiar
stranger networks are established based on view records from
one of China’s largest VoD service providers. Analysis shows
that users can be separated into light users and heavy users.
Community detection results show that there is a threshold of
familiarity that drastically deteriorates the community structure
of the familiar stranger network. Further investigation on the
evolution of the communities suggests that there exists con-
siderate number of dynamic communities with low members
turnover. Our findings about the interest-based familiar stranger
network unveils interesting networked user behavior patterns
and provides meaningful guidelines for Internet applications like
online user communities and recommendation systems.

I. INTRODUCTION

VoD services are having more and more impact on people’s
daily life. According to Cisco, IP video traffic will be 82
percent of all consumer Internet traffic by 2020, up from 70
percent in 2015 [1]. They also predicted that Consumer VoD
traffic will nearly double by 2020. With the enormous traffic,
problems with regard to videos naturally draw both industrial
and academical interest.

Some previous works paid much attention to video user
behavior and experience. The authors of [2] presented one
of the first measurement studies of large-scale VoD systems.
They found that users access content in a pattern that follows a
Poisson distribution. Authors of [3] did similar measurements
on YouTube and found that video viewcount distribution
exhibits a power-law pattern with truncated tails. They further
proposed that video viewcount is predictable. In [4], the
authors modelled the quality of experience (QoE) of wireless
networks of a large-scale VoD system. They also observed that
the viewing time of streaming users fits a hyper-exponential
distribution quite well, implying that all viewers of longer
videos and shorter ones behave differently.

Previous works have also been dedicated to video popularity
prediction. In [5], the authors examined the relation between
viewcount and other video-related metrics such as likes and
comments. They discovered significant positive correlation

between viewcount and metrics like # of comments, # of
favors and # of ratings. Many linear-regression-based models
have then been introduced to predict video popularity. Social
network data have also been brought in to help better un-
derstand the variation in video popularity. In [6], researchers
merged data from YouTube and Twitter and obtained effective
cross-network predictors on sudden bursts of Twitter-driven
YouTube views and steadily growing ones. Authors of [7]
pointed out that popularity dynamics of OSN-driven views are
non-linear. Therefore, instead of linear models, they applied
an epidemic model based on data from Renren, the largest
OSN in China at that time, and achieved amazingly accurate
prediction results.

Generally speaking, the interaction between users and
videos can be depicted as a bipartite graph. Users establish
links to videos by uploading or interacting with existing
videos, such as watching, liking, marking, and making com-
ments. The two perspectives mentioned in the two previous
paragraphs only counts local information of video nodes and
user nodes. A different way to look at the bipartite graph is
to project the graph onto one of the two disjoint sets. There
have been, however, very few discussions on the projections
of the bipartite graph. The authors of [8] discussed the video
response features of YouTube. They regarded YouTube as a
social network consisting of videos and corresponding up-
loaders. They altered that opportunistic behavior among video
uploaders may jeopardise user experience.

To the best of our knowledge, there is no published work on
the relationship among video service users. In fact, the video
service users themselves form an Online Social Network. The
volumes as well as other features of the overlap of a pair of
users’ view history marks the similarity of their preference for
videos. The similarity indicates a virtual connection between
the pair of users. We define users with adequate similarity as
the “familiar strangers” of each other. The notion of “familiar
stranger” is originally a social psychological term, referring
to an individual who is recognized from regular activities, but
with whom one does not interact [9]. The original definition
emphasize the spacial similarity. In the context of the virtual
environment of the cyber space, users meet each other at
videos they all watched. Therefore, the spacial similarity is
replaced by the similarity of content. The similarity of content



is less intuitive, but more profound, since it is a much better
indicator of the similarity in interest, hobby, personality, etc.
Therefore, the relation according to the similarity of content
and preference is worthier of the name of “familiar strangers.”

In this study, we aim to understand user behavior from a
network approach. We construct a familiar stranger network
that evolves within time using our dataset provided by one
of the largest VoD service providers in China. We find that
there is an obvious difference between heavy users and light
users. Cluster detection results show that the network has
good community structure under certain conditions. Long-
lived dynamic communities are discovered, indicating that
there are many groups of people whose preference for videos
remain similar for long. Our findings about the interest-based
familiar stranger network provides meaningful guidelines for
the maintenance of online user communities, which may lead
to better recommendation systems.

The rest of the paper is organized as follows. In Section II,
the dataset used in the study is introduced and washed.
The dynamic familiar stranger network is constructed in
Section III. In Section IV, community detection algorithm
and dynamic community tracing algorithm are applied to the
familiar stranger network, and the outcomes are discussed in
detail. We conclude in Section V.

II. DATASET
A. Overview

Unlike those used in most of the other previous works,
which were crawled by the researcher themselves, our dataset
is provided by one of the largest Video-on-Demand (VoD)
service providers in China. We have full access to all records
of video access from mobile devices running Android, Apple
OS and Symbian between September/1/2014 and Septem-
ber/14/2014. There are more than 200 million of view records
everyday. Each entry of the view records contains a set of
information as follows:

<Timestamp, VideolD, VideoType, UserID, ...>.

Here, Timestamp marks the time instant that a streaming
session ends. VideoType identifies the content type, i.e. TV
episode, music, news, animation, variety show, and amuse-
ment. VideoID and UserID are encrypted so that we cannot
recover the exact meta information of watched videos. After
invalid view records such as repeated watching in a very short
interval have been cleansed, the dataset contains more than 2.5
billion entries, covering around 100 million individual users
and 1.4 million video clips.

We focus only on the user graph of TV episodes in this
study. In this study, the term of “video” only refers to a
TV episode unless explicitly mentioned. We do so mainly
because of the fact that, TV episodes generates a dense user
network. (In our dataset, TV episodes, making up only around
5% of the total volume of the whole video set, astonishingly
attracted 35% of view counts.) The commercial value and
social impact of TV content are also good reasons for us to
focus on TV episodes. Fig. 1 shows the access frequency of
TV-typed videos in our dataset.

B. Distribution of Viewcounts
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Fig. 1. An overview of frequency
of access to TV-typed videos. The
frequency of access is cumulated
into 10-minute intervals over the

Fig. 2. View count distribution on Day
1. The blue dots stands for videos that
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while the red circles refer to the hottest
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Fig. 3. The number of TV users and its development in the user graph. Fig. 3a
involves all users, while Fig. 3b depicts the sampled users.

Popularity, mainly measured by viewcount, varies drasti-
cally among TV episodes. The distribution of view counts on
day 1 (September/1/2014) of all TV-typed videos is shown
in Fig. 2. Empirically, human activity usually follows a
power-law distribution. For the videos with relatively smaller
view counts, the popularity curve can be well captured by a
power-law distribution, as illustrated by blue dots. However,
for videos with extremely high view counts, the popularity
distribution exhibits a heavy tail, as illustrated by red circles.
We assume that extremely popular videos cannot serve well
as an indicator of each individual’s personal interest, since
almost everyone watched them. We therefore consider exclud-
ing these videos. We used a fitting approach. When fitting
the distribution of view counts, we compute coefficient of
determination (R?) to measure the goodness of fitting. An
intuitive observation is that after the most popular videos have
been removed, the view counts of the remaining videos can
be better captured by the power-law distribution, and hence
yielding a larger R%.

After the pruning, around 2000 TV clips are excluded. We
end up with more than 50 thousand clips.

C. Volume of Users

There are more than 50 million users involved in the
complete user graph of TV-typed videos. Because of some
technical reasons, in this article, we base our discussion on a
user graph of 2.5% of all users randomly sampled ( more than
1 million users). The sampling has been carried out multiple
times, and the features of the user graphs are almost the same.



Fig. 3 demonstrates the number of daily active users and the
cumulative number of users in the dataset.

III. THE FAMILIAR STRANGER NETWORK

In this section, we focus on user behavior from a network
approach. We will define the user graph, and construct the
familiar stranger network based on the user graph.

A. Definition

Real-world social networks are usually evolving. Edges in
real-world social networks change within time. They can be
established, maintained, or destroyed at a certain time. In order
to bring in the evolution mechanism to the familiar stranger
network, we introduce a sliding window. For the familiar
stranger network on day 7', we only consider the view records
within the last W days from 7', which are covered by the
sliding window that starts from day max(1,7 — W + 1) and
ends on 7. The edges caused by view records outside the
window are “forgotten”.

Let U be the set of users, and V(u;,t) be the set of videos
that user u; € U watch on day ¢. The familiarity between users
u; and u; on day t, denoted by w(u;, u;,t), can be measured
by the volume of the intersection of the set of videos u; and
u; watched within W days from day ¢.

w(ui,uj,t) — { Za.ﬂe[t/,t} |V(u(l)7a) n V(U’J?B” ) 72’ ij
(1)

where t' = max(1,t—W +1). w(u;, u;,t) is equivalent to the
weight of the edge between u; and u; in user graph, which is
the projection of the video-users bipartite graph onto the user
nodes.

In order to move on to the familiar stranger network,
we further define isFamiliar(u;,u;) as a boolean indicator
marking whether u; and u; are familiar strangers of each other.

1, wu,uy,t) >n
0 5 w(ulaujvt) S n

where 7 is the threshold. 7 has great impact on the structure
of the graph, which will be shown in Section IV. But when
looking at the degree and strength distributions, 1 doesn’t
make a large difference. In this section, we choose 1 = 1.

The familiarity of u; and u; in the familiar stranger network,
which is equivalent to the weight of the edge between u; and
u; in the familiar stranger network, is defined as

isFamiliar(u;, uj,t) = { , (2

We (Ui, uj,t) = max|(0, w(u;, uj, t) — 1. 3)

In weighed networks, the degree and strength of nodes are two
basic metrics. In this work, the degree of u; in the familiar
stranger network is denoted as

Z isFamiliar(u;, uj,t). 4)
YujeU

dgr(uia t) =

Similarly, the strength of u; in the familiar stranger network
is denoted as

str(ug, t) = Z we (u;, uj, t). ®)

Vu; eU

B. The Dynamic Familiar Stranger Network
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Fig. 4. An illustration of the number of users covered by the sliding window.

Fig. 5. An illustration of the dgr and str distributions under a sliding window.
Fig. 5a and Fig. 5b show the distributions on Day 1, 7, and 14. Fig. 5c and
Fig. 5d showed the evolution of the Q1, @2 and @3 of the dgr and str
distributions respectively.

For a dynamic familiar stranger network, it will take as
long as the length of the sliding window for the network to
get fully established. Prior to its establishment, the network
undergoes expansion. Since our dataset spans over 14 days, we
find W = 7 to be a reasonable choice to trace the change in
the network during both stages before and after establishment.

The volume of the familiar stranger network is shown in
Fig. 4. Everyday, about 35 thousand users in the network
accessed videos. When the network is fully established, there
are about 130 thousand users covered by the sliding window.
A total number of more than 200 thousand users had shown up
in the familiar stranger network. This shows that the network
has a considerate overturn.

Fig. 5 demonstrates the evolution of the dgr and str of
the dynamic familiar stranger network. Fig. 5a and Fig. 5b
show the dgr and str distributions on Day 1, Day 7, and
Day 14, which are respectively the first day, the day when the



familiar stranger network is fully established for the first time,
and the last day. All distributions appear to be synthesized
by two different power-law distributions. This feature will be
discussed in Section IV. In the figures, an obvious expansion
can be seen from Day 1 to Day 7. However, the distributions
of Day 7 perfectly overlap with those of Day 14.

In order to trace the evolution among the entire 14-day,
especially from day 7 to 14, we use the percentiles to depict the
general distribution features of the graph. Fig. 5c and Fig. 5d
demonstrates the evolution of dgr and str respectively, using
the the 25th, 50th and 75th percentile, corresponding to 1,
(22 and Q3 respectively. Both dgr and str experience a linear-
like growth during the establishment of the familiar stranger
network. After the graph is fully established, both dgr and str
remain stable.

It is reasonable to say that, once established, the distribution
and density of the familiar stranger network is quite stable.
The stability of the graph lays the foundation of potential
applications, such as community detection, which will be
discussed in Section IV.

IV. COMMUNITY DETECTION

In This section, the community structures in the dynamic
familiar stranger network established in Section III-B is dis-
cussed. Community structures are very common in such scale-
free networks and networks related to human behavior [10].
We have reasons to believe that in the familiar stranger
network, significant community structures also exists. As a
first step into the “familiar stranger” phenomenon in the user
graph, we treat the graph as unweighed.

A. The Impact of the Threshold Variable n

In Section III-A, it is mentioned that 7 has a large impact on
the community structure of the familiar stranger network. In
this section, we use the popular modularity-based community
detection algorithms [12], [14] to discover the community
structures and their evolution. Aside from modularity, other
metrics such as the size of the graph and its connectivity are
also important aspects. For those familiar stranger networks
with poor connectivity, the familiar stranger networks do not
make much sense, since the communities are broken into
disjoint subgraphs, there is very limited diversity in users’
taste. This is certainly not what happens in the real world. On
the other hand, if the graph has a big connected component,
the users may have wide interest in videos, and the user of a
video may have very different backgrounds. In this case, the
communities interact well with others.

Fig. 6 shows the modularity, the coverage (the percentage
of users in the largest connected component, abbr. LCP ), the
size of the LCP, and the number of communities detected in
the LCP in the dynamic familiar stranger network on Day 14,
which is the last day in the dataset. Generally, the coverage and
size of the LCP declines with the growth of threshold variable
n. In Fig. 6a, however, the coverage experience an abnormal
increase around 1 = 40 and n = 50, but the coverage is
already below 20%, therefore the communities are too small

to draw any conclusion. Interestingly, there seems to be an
inflection point around n = 35. At around n = 30, the
modularity is maximized. However, on surpassing n = 35, the
modularity deteriorates drastically. Similar pattern is observed
in the coverage of the LCP. The coverage declines smoothly
when 7 < 30, while when 1 > 30, the coverage drops hastily
to below 20%.

Similarly, when 1 < 30, the number of users in the LCP
(Fig. 6b) decreases exponentially with a stable exponent. On
surpassing 1 = 30, the size of the LCP experience a much
more drastic drop. It only recovers the smooth decline after
1 = 36. The number of clusters detected in the LCP (Fig. 6¢)
remains relatively stable on a high level when 7 is low ([1, 20]).
As n grows ([20, 30]), the number smoothly declined a little.
When 7 grows larger than 30, the number of clusters hastily
drops by more than 90%.

Given that 7 is used to measure if a pair of users are familiar
enough to be familiar strangers (See the definition in (2)), the
magic threshold around 1 = 35 in Fig. 6 leads to a conclusion
that in the familiar stranger network, edges with weight larger
than 35 are topologically very different from the rest. This
observation of the inflection point accords with the distribution
patterns previously observed in the users’ dgr (Fig. 5a) and
str (Fig. 5b). In order to verify that, the weight distribution
in the dynamic familiar stranger network on Day 14, which is
the same day as in Fig. 6, is shown in Fig. 8.

In Fig. 8, it is obvious that the link weight distribution curve
is synthesized by two power-law distribution curves with very
different exponents. Together, Fig. 6 and Fig. 8 suggest that
very few people has connections with weight larger than 35.
By purging the weak links hence eliminating the light users,
the fact unveils itself that users heavily involved in the familiar
stranger network are not tightly organized. This indicates
that they enjoy a high degree of diversity in the means of
preference for videos. (Note that when 1 > 40, only less
than 5 communities can be detected from the largest connected
component. In this case, members of a community must have
considerate number of cross-community connections, so that
the modularity remains at a low level. ) More or less, these
users have some interest in common with each other. But their
distinctive preference for video is diversified enough to fall
into, or even represent different clusters.

The size of the communities detected in the graph is also
an important feature. Fig. 7 shows the evolution of the size
distribution of the communities when 7 changes. Fig. 7a is the
heat map of (1, community size) pairs. Each small square in
the figure represents the number of communities that fall into
the corresponding size interval detected in the graph generated
with the corresponding threshold 7. A color closer to red
represents a higher number. Generally, the distribution shrinks
exponentially with the growth of 7. For a fixed 7, the size
distribution seems to be following a normal distribution, being
symmetric with regard to the centroid, which is the point with
the darkest color.

In Fig. 7b, the 100th, 75th, 50th, 25th and 0th percentiles
are used to depict the evolution of the size distribution. Every
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of Fig. 7b.

one of the five measurements declines exponentially, and the
75th and the 25th percentiles are symmetric with regard to
the median (50¢h percentile). The symmetry of the distribution
suggests that the size distribution is very likely to be following
a normal distribution, instead of the power-law distribution
suggested by many other works. [11], [13] This is, however,
a lovely feature. Tiny communities are harder to make use of.
And normal distribution indicates much less tiny communities
than power-law distribution does.

In order to better understand the decline pattern of the
size distribution parameters, Fig. 7c is presented in log scale.
Interestingly, the 100th, 75th, 50th, and 25th percentiles share
the same slope, indicating the four parameters decay at a
unanimous rate.

B. The Evolution of Communities

Typically, a dynamic community undergoes stages such as
birth, merging, splitting, expansion, contraction, and death
[14]. Dynamic communities active for long indicate that their
members remain highly familiar with each other for a long pe-
riod of time. The existence of long-lived dynamic communities
is essential to applications such as online user communities,
recommendation systems, and content prefetching.

In this study, we apply the dynamic community tracing
method in [14]. The Jaccard Coefficient is used to measure
the similarity of the communities. sim(A,B) = %. A
threshold 6 is used to determine the relationship between
two clusters from two consecutive days. In [14], the authors
suggested that § = 0.3 be a moderate threshold value for
Jaccard Coefficient. However, in [14], the dataset did not have
a significant overturn. While in our study, the user set have
a considerate overturn. Fig. 9 shows the Jaccard Coefficient

of the LCP in the dynamic familiar stranger network between
consecutive days. It can be told that the overturn of the familiar
stranger network is relatively big. Therefore, § = 0.3 would
be too strict in our dataset. In this study, 6 € {0.1,0.2,0.3}
is tried. Also, because we are more interested in long-lived
communities, the dynamic communities are categorized by
their lifetime. In our dataset, the maximum lifetime is 8 days,
so the dynamic communities that have been active for more
than or equals 7 days are considered long-lived. Those with
lifetime shorter or equals 2 days are considered short-lived.

Fig. 10 shows the absolute number and proportion of the
dynamic communities of the three categories under different 7.
When 6 = 0.1, long-lived dynamic communities comprises of
more than 80% of all the detected dynamic communities when
n < 30, as is shown in Fig. 10d. However, it is noticed that the
total number of communities in each day’s familiar stranger
network is less than 80 (Fig. 6¢), which is astonishingly less
than the number of dynamic communities in Fig. 10a. In this
case, the dynamic communities are too small to make sense.

When 6 = 0.3, which is the recommended value in [14], not
much long-lived dynamic communities are detected (Fig. 10c).
And the long-lived communities do not make up of a majority
of all detected communities (Fig. 10f). We draw the conclusion
that due to the high overturn in our dataset, § = 0.3 is a
relatively strict threshold.

When 6 = 0.2, the number of long-lived dynamic com-
munities (Fig. 10b) accords well with the total number of
communities in each day’s familiar stranger network (Fig. 6¢).
And the proportion of the long-lived dynamic communities
are relatively high. Long-lived dynamic communities have low
overturn, which is defined by the tracing algorithm. That being
said, users in long-lived communities maintain the familiar
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stranger relations with others for a long time, which means
their preference for videos remain similar over time.

We conclude that under appropriate criteria, we can detect
dynamic communities that evolves for a long time.

V. CONCLUSION

In this work, we make the first attempt to understand the
user behavior of a VoD system from a network approach.
Based on the user graph extracted from one of the largest VoD
systems in China, a familiar stranger network that depicts the
users’ similarity in preference for TV episodes is constructed.
The familiar stranger network resembles the combination of
two distinct scale-free networks, suggesting that there be very
few heavy users and quite a lot of light users. Community
detection results with varying familiarity threshold n unveils
the structure of the familiar stranger network. More concretely,
the light users are centered around the heavy users, most of
whom have different preference for videos from each other. It
is also discovered that under appropriate criteria, we can detect
dynamic communities that remain active for a long period of
time, indicating stable familiar stranger relationship between
community members. The features of the familiar stranger
network could be very useful for Internet applications like
online user community, recommendation systems, and content
prefetching.
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